Search results

Search for "laser ablation in liquid" in Full Text gives 7 result(s) in Beilstein Journal of Nanotechnology.

High-responsivity hybrid α-Ag2S/Si photodetector prepared by pulsed laser ablation in liquid

  • Raid A. Ismail,
  • Hanan A. Rawdhan and
  • Duha S. Ahmed

Beilstein J. Nanotechnol. 2020, 11, 1596–1607, doi:10.3762/bjnano.11.142

Graphical Abstract
  • hydrothermal methods, chemical bath deposition, laser ablation in liquid reverse microemulsion, electrospinning, sol–gel, electrochemical method, template method, sonochemical method, and hydrochemical bath deposition [10][11][12][13]. The size of Ag2S NPs depends on the preparation conditions [14]. Ag2S NPs
PDF
Album
Full Research Paper
Published 21 Oct 2020

Soybean-derived blue photoluminescent carbon dots

  • Shanshan Wang,
  • Wei Sun,
  • Dong-sheng Yang and
  • Fuqian Yang

Beilstein J. Nanotechnol. 2020, 11, 606–619, doi:10.3762/bjnano.11.48

Graphical Abstract
  • nm from soy milk also at 180 °C. Laser ablation in liquid (LAL) has been used to produce nanomaterials with special morphologies, microstructures, and phases and with various functionalized nanostructures [23][24][25]. For example, carbon-based nanoparticles with fewer side-products have been
  • the surface N-functionalization of carbon nanoparticles derived from biomass and biowaste and for the production of carbon nanoparticles with stable PL characteristics and excellent water-wettability. Schematic of the setup for laser ablation in liquid. TEM images of soybean-derived nanoparticles: (a
PDF
Album
Supp Info
Full Research Paper
Published 09 Apr 2020

Laser irradiation in water for the novel, scalable synthesis of black TiOx photocatalyst for environmental remediation

  • Massimo Zimbone,
  • Giuseppe Cacciato,
  • Mohamed Boutinguiza,
  • Vittorio Privitera and
  • Maria Grazia Grimaldi

Beilstein J. Nanotechnol. 2017, 8, 196–202, doi:10.3762/bjnano.8.21

Graphical Abstract
  • samples have a surface area of 0.7 cm2. The synthesis of platinum nanoparticles (PtNps) was performed by pulsed laser ablation in liquid by irradiating a Pt metal foil (Sigma Aldrich, purity 99%) with a Nd:YAG laser (Giant G790-30) at 1064 nm (10 ns pulse duration, 10 Hz repetition rate). The laser was
PDF
Album
Full Research Paper
Published 19 Jan 2017

Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution

  • Brunella Perito,
  • Emilia Giorgetti,
  • Paolo Marsili and
  • Maurizio Muniz-Miranda

Beilstein J. Nanotechnol. 2016, 7, 465–473, doi:10.3762/bjnano.7.40

Graphical Abstract
  • as antibacterial agents with applications in several fields due to their strong, broad-range antimicrobial properties. AgNP synthesis by pulsed laser ablation in liquid (PLAL) permits the preparation of stable Ag colloids in pure solvents without capping or stabilizing agents, producing AgNPs more
  • by synthesizing the NPs using pulsed laser ablation in liquid (PLAL). In fact, PLAL is a physical approach that permits preparation of stable metal colloids in pure solvents without the use of capping or stabilizing agents [26][27]. The NPs are obtained by focusing a pulsed laser beam onto a metallic
  • ). Conclusion We have synthetized AgNPs with a small average diameter and a narrow size distribution using the pulsed laser ablation in liquid method (PLAL). The diameter of the resulting nanoparticles lies in the size range known to have the highest antimicrobial activity. The AgNPs are effective against both
PDF
Album
Full Research Paper
Published 18 Mar 2016

Fabrication of hybrid nanocomposite scaffolds by incorporating ligand-free hydroxyapatite nanoparticles into biodegradable polymer scaffolds and release studies

  • Balazs Farkas,
  • Marina Rodio,
  • Ilaria Romano,
  • Alberto Diaspro,
  • Romuald Intartaglia and
  • Szabolcs Beke

Beilstein J. Nanotechnol. 2015, 6, 2217–2223, doi:10.3762/bjnano.6.227

Graphical Abstract
  • composite thin films of hydroxyapatite (HA) and biodegradable polymers by combining pulsed laser ablation in liquid and mask-projection excimer laser stereolithography (MPExSL). Ligand-free HA nanoparticles were prepared by ultrafast laser ablation of a HA target in a solvent, and then the nanoparticles
  • gradual release of the hydroxyapatite nanoparticles over thin film biodegradation is reported. Keywords: biodegradable scaffolds; biodegradation; hydroxyapatite; laser ablation in liquid; stereolithography; Introduction Interfaces between osteochondral prosthetics and the surrounding bone tissue are of
PDF
Album
Full Research Paper
Published 25 Nov 2015

Improved optical limiting performance of laser-ablation-generated metal nanoparticles due to silica-microsphere-induced local field enhancement

  • Zheren Du,
  • Lianwei Chen,
  • Tsung-Sheng Kao,
  • Mengxue Wu and
  • Minghui Hong

Beilstein J. Nanotechnol. 2015, 6, 1199–1204, doi:10.3762/bjnano.6.122

Graphical Abstract
  • efficiently attenuate high intensity light, needs to be improved. In this paper, we fabricate nanoparticles of different metals by laser ablation in liquid. We study the optical nonlinear properties of the laser-generated nanoparticle dispersion. Silica microspheres are used to enhance the optical limiting
  • the nanoparticle dispersion. Keywords: laser ablation; local field enhancement; microspheres; nanoparticles; optical limiting; Introduction Laser ablation in liquid (LAL) is a versatile technique to fabricate nanoparticles. Conventional synthesis of nanoparticles by chemical reactions is usually
PDF
Album
Full Research Paper
Published 22 May 2015

Current state of laser synthesis of metal and alloy nanoparticles as ligand-free reference materials for nano-toxicological assays

  • Christoph Rehbock,
  • Jurij Jakobi,
  • Lisa Gamrad,
  • Selina van der Meer,
  • Daniela Tiedemann,
  • Ulrike Taylor,
  • Wilfried Kues,
  • Detlef Rath and
  • Stephan Barcikowski

Beilstein J. Nanotechnol. 2014, 5, 1523–1541, doi:10.3762/bjnano.5.165

Graphical Abstract
  • toxicological studies. Nanoparticles synthesized by pulsed laser ablation in liquid are a promising alternative as this synthesis route provides totally ligand-free nanoparticles. The first part of this article reviews recent methods that allow the size control of laser-fabricated nanoparticles, focusing on
  • laser ablation in liquid has been described in the literature [115][120] and these nanoparticles were frequently adsorbed to implant surfaces as nanocoatings [121]. Even though Ni nanoparticles, and particularly the Ni2+ ions which they release, are known to have an immunogenic effect [122] and are
  • nanoparticle reference materials are needed which have to be totally ligand-free in order to avoid cross contaminations. Such demands are ideally fulfilled by nanoparticles obtained by pulsed laser ablation in liquid (PLAL). Size control of these materials without artificial stabilizers can be achieved via
PDF
Album
Video
Review
Published 12 Sep 2014
Other Beilstein-Institut Open Science Activities